Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16040-16049, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518111

RESUMO

Transport layer and interface optimization is critical for improving the performance and stability of perovskite solar cells (PSCs) but is restricted by the conventional fabrication approach of sequential layer deposition. While the bottom transport layer is processed with minimum constraints, the narrow thermal and chemical stability window of the halide perovskite (HP) layer severely restricts the choice of top transport layer and its processing conditions. To overcome these limitations, we demonstrate lamination of HPs─where two transport layer-perovskite half-stacks are independently processed and diffusion-bonded at the HP-HP interface─as an alternative fabrication strategy that enables self-encapsulated solar cells. Power conversion efficiencies (PCE) of >21% are realized using cells that incorporate a novel transport layer combination along with dual-interface passivation via self-assembled monolayers, both of which are uniquely enabled by the lamination approach. This is the highest reported PCE for any laminated PSC encapsulated between glass substrates. We further show that this approach expands the processing window beyond traditional fabrication processes and is adaptable for different transport layer compositions. The laminated PSCs retained >75% of their initial PCE after 1000 h of 1-sun illumination at 40 °C in air using an all-inorganic transport layer configuration without additional encapsulation. Furthermore, a laminated 1 cm2 device maintained a Voc of 1.16 V. The scalable lamination strategy in this study enables the implementation of new transport layers and interfacial engineering approaches for improving performance and stability.

2.
Adv Opt Mater ; 9(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34434691

RESUMO

The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.

3.
Nanotechnology ; 27(23): 235401, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27119335

RESUMO

Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanodes, and utilized the plasmonic effects of Au NPs to enhance the photoresponse. The plasmonic enhancement leads to an AM 1.5 photocurrent of 5.1 ± 0.1 mA cm(-2) at 1.23 V versus a reverse hydrogen electrode. We observed an enhancement of five times with respect to pristine BiVO4 in the photocurrent with long-term stability and high energy-conversion efficiency. The overall performance enhancement is attributed to the synergy between the nanoporous architecture of BiVO4 and the plasmonic effects of Au NPs. Our further study reveals that the commendable photoactivity arises from the different plasmonic effects and co-catalyst effects of Au NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...